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INTRODUCTION

A great deal of work has been accompl ished in the area of elastic

laminated effective stiffness or, microstructure continuum theories and

approximate plate and beam theories. By the same token, little has

been accomplished with viscoelastic counterparts to these theories.

An elastic continuum theory which included effective stiffnesses

for both the reinforcing and matrix layers of a laminated continuum

was developed by Sun, Achenbach, and Herrmann [1, 21. The continuum

theory was utilized by Thomas [3] to study the simple thickness modes

for laminated media with layering both parallel and perpendicular to

the plate free surfaces. Sun [4] deduced a two dimensional theory for

laminated plates from the three dimensional continuum theory. Veloc-

44i Ly correction cuefficients were introduced -into the two dimensional

theory by Thomas [5] and flexural and extensional vibrations for plate

C. T. SUN, J. D. ACHENBACH and G. HERRMANN (1968) Journal of Applied

Mechanics, 35, 467. Continuum Theory for a Laminated Medium.

2 . D. ACHENBACH, C. T. SUN and G. HERRMANN (1968) Journal cF Applied
Mechanics, 35, 689. On the Vibrations of a Laminate-e-dy. 1

C. R. THOMAS (1972) Journal of Sound and Vibration, 23(_3, 341-361.
Simple Thickness Modes---o-r--L-a-linated Compo- Tf-eMe"Ta s.

C. '. SUN (1971) Journal of Applied Mechaiics, 38, 231-238. Theory
of Laminated Plates.

5C. R. THOMAS (1972) Journai of Sound and Vibration, 25§•j, 407-431.
Velocity Corrected Theory of Laminated Plates Applied to Free Plate
Strip Vibrations.
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K strips and rectangular pldtes were !studied by Thomas [6, 7] according

to this theory and compirred to similar results from effective modulus

plate theories. A microstructure theory for an elastic, laminated

composite beam was developed by Sun [8] and the approach utilized in

this paper will be followed in deriving a viscoelastic, laminated com-

posite beam theory. Thomas [9] showed that the flexure beam theory in

reference [.8] is directly obtainable through a simple reduction of the

existing flexure equations for composite plates [4, 5].

A continuum theory for a viscoelastic laminated composite was

developed by Grot and Achenbach [10], however the equations developed

4C. T. SUN (1971) Journal of Applied Mechanics, 38, 231-238. Theory
of Laminated Plates. _________ _

5C. R. THOMAS (1972) Journal of Sound and Vibration, 25 3 , 407-431.f
Velocity Corrected Theory of Laminated Plate ApTetoFePle
Strip Vibrations.

:i . R. THOMAS (1973) jtournal of Sound and Vibration, 31(21, 195-211.
Extensional Vibrations of Simply Supported ComposTte Plate Strips.

lC. R. THOMAS (1975) Journal of the Acforustical Society of America,
57L31, 655-659. Flexural anvdlExtensional Vibrations of Simply Sup-
ported Laminated Rectangular Plates.

8 C. T. SUN (1971) Journal of Applied Mechanics, 38, 947-954. Micro-
structure Theory Tfor a ompos[te Bear.

9 rC. R. THOMAS (1973) Watervliet Arsenal Techrical Redort,
R-Wei -T-6-45-73. Flexure EquationsofMotion for Lamiarted Composite
Beams.

R.A. GROT and J. 0. ACHENBACH (1970) Acta Mechanica, 9, 245-263.
Linear Isothermal Theory for a Viscoelastic Laminate Composite.

2



were not applied to any problems of wave propagation or vibration. It

is certainly theoretically possible to start with the equations in

reference [10], to make appropriate series expansions and derive a

plate theory, and to then follow reference [9] to make a direct reduc-

tion to a viscoelastic beam theory. However, for convenience and sim-

plicity of analysis, the approach in the current report will be to be-

gin with the viscoelastic Timoshenko beam equations and work towards a

viscoelastic laminated beam equation in the manner of reference [8].

With somewhat guarded conclusions, Stern, Bedford, and Yew [11] have

demonstrated a definite need for an effective stiffness type formula--

tion for viscoelastic laminates.

The current approach to obtaining a viscoelastic laminated beam

theory will be a viscoelastic development which mirrors the elastic

development given by Sun [8]. Surprisingly, the real difficulty is in

obtaining the energies for a single layer modeled as a viscoelastic

Timoshenko beam. The most pleasing and straightforward development

of suitable viscoelastic Timoshenko beams results from a utilization

p8
8 C. T. SUN (1971) Journal of Applied Mechanics, 38, 947-954. Micro-

structure Theory for a Composite Beam.

9C. R. THOMAS (1973) Watervliet Arsenal Technical Report,R-WV-T-6-45-73. FIe_5Ue '-L7q ual-o-s ogo-T T•io- F _ aiiti e d C omiiipo s-1t e
Beams.

1R. A. GROT and J. D. ACHENBACH (1970) Acta Mechanica, 9., 245-263.

Linear Isothermal Theory for a Viscoelastic Laminated Composite.

IIM. STERN, A. BEDFORD, and C. H. YEW (1971) Journal of Appl ied Mechan-

ics, 38_(, 448-454. Wave Propagation in Viscoelastic Laminates.

3



of viscoelastic constitutive relations of the differential form; it is

these equations which yield a viscoelastic development which closely

mirrors Sun's [8] elastic derivation.

THE ENERGY PRINCIPLE

As Sun [8] does in the development of an elastic laminated beam

theory, the first task in deriving a viscoelastic laminated beam theory

is to formulate energies for individual viscoelastic layers in terms of

the Timoshenko 12] beam theory. In the past, Lee [13] developed vis-

coelastic Timoshenko beam equations for viscoeldstic f•xtensional strain

but the shear strain was left elastic. Pan [14] extended the analysis

to include viscoelastic shear strains. The current objective is to

develop the viscoelastic Timoshenko beam equations in a form more suit-

able to the development of a Viscoelastic composite beam theory. A first

goal will be the development of a single layer energy principle suitable

for a direct application in the derivation of a multilayer energy prin-

ciple.

The developmenr of an approximate theory such as for laminated

elastic plates has originally been a two step procedure. In the first

8C. T. SUN (1971) Journal of Ap)lied Mechanics, 38, 947-954

Microstructure Theory for a Composite Beam.

2S. P. TIMOSHENKO (1922) Philosophical Magazine, Ser. 6, Vol. 43,

125-131. On the Transverse Vibrations of Bars of Uniform Cross-Section.

1H. C. LEE (1960) Journal of Applied Mechanics, 27, 551-556. Forced

K lateral Vibration of a Uniform Cantilever Beam with Internal and
External Damping.

14 H. PAN (1966) Jour. Lng. Mech. Div., Proc. Amer. Soc. Civil En9.,
213-234. Vibrationof a Viscoelastic TFimos•eeko BeTam.

4



instance, the Mindlinplate theory [15] in its first order approximation

was utilized to deelop a continuum theory for laminated composites.

Tnen to obtain a laminated plate theory a first order approximation is

made on those variables in the continuum theory which came from the

zero order part of the Mindlin plate theory and a zero order approxima-

tion is made on the variaoles which came from the first order part of

the Mindlin theory as in Sun [4] and Thomas [5] - this explanation will

become clear shortly. Now in developing an elastic laminated beam

theory, Sun [8] has made both of these approximations simultaneously

to obtain a flexure theory for laminated beams. Actually, Thomas [9]

has shown that the flexure beam theory is directly obtainable from the

existing flexure plate theory.

The current objective is to immediately derive a viscoelastic

laminated beam theory and to not have to develop a viscoelastic lami-

nated continuum theory first. In making the various zero and first

4 C. T. SUN (1971) Journal of Applied Mechanics, 38, 231-238.
Theory of Laminated Plates.

5C. R. THOMAS (1972) Journal of Sound and Vibration, 25(3_),
407-431. Velocity Corrected Theory of Laminated Plates Applied
to Free Plate Strip Vibrations.

C. T. SUN (1971) Journal of Applied Mechanics, 38, 947-954.

Microstructure Theory for a Composite Beam.

'C. R. THOMAS (1973) Watervliet Arsenal Technical Report,
R-WV-T-6-45-73. Flexure Equations of Motion for Laminated Com-
posite Beams.

R. D. MINDLIN (1955) Signal Corp sEngineering Laboratories, Fort

Monmouth, New JerseyAD,--Wl-. A--TnTr-oucton••T--e--atF-e
ma,.l Theory of Vibrations of Elastic Plates.

5
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order expansions of displacement, terms which lead to an extension

theory are also maintained since the second expansion of extensional

displacements leads to a flexure term. The first order displa dments

which will result in the Timoshenko beam equations [12] for flexure

as well as an extensional equation for beams are

v(y,z,t) = v(y,t) - zf(y,t)

w(y,z,t) = w(y,t) - z#(y,t). (1)

the zero order terms in (1) are v and w and a first order expansion of

these two displacements results in the expressions

V(y,t) = v(k(y,') - zm •a(y,t)

w(y,t) = w k(y,t) - zX J'(y,t) (2)

where the subscript 1 = I, 2 will later denote whether a stiff or soft

laminated beam layer is indicated arid the superscript k which layer

pair is indicated. While absolutely necessary at this point, the

notation in (2) jumps into the laminate notation while seeming to be

at the single layer stage of development. See Sun, Achenbach, and

Hlerrmann [l] or Sun [8] if clarification is required.

Combining equations (1) and (2) and extracting only those terms

which result in flexural motion results in the displacement relations

C. T. SUN, J. D. ACHENBACH and G. HERRMANN (1968) Journal of A plied

Mechanics, 35, 467. Continuum Theory for a Laminated Medium.

"8C T. SUN (1971) Journal of Applied Mechanics, 38, 947-954. Micro-

structure Theory for a Composite Beam.

IS. 1 TIMOSHENKO (1922) Philosophical Maaazine, Ser 6, Vol 43, 125-131.
On the Transverse Vibrations of Bars of Uniform Cross-Section.

6



v(y,z,t) -Z k CL/,t) z4(y,t)

w(y,z,t) = Wkyt) (3)

where w (y,t) represents the gross rotation in the laminated beam,

wk(y,t) represents the transverse deflection, and f(y,t) represents

the individual layer rotation. The various displacements and rotations

on the right side of (1) refer to the individual layers which will

eventually make up thc laminated beam. The various displacements and

rotations on the right side of (2) represent the reduction from a lain-

inated continuum theory to a laminated beam theory; thus, from conti-

nuity of displacement and rotation at laminate interfaces, it is clear

that the notation may be simplified to w(y,t) = wk(y,t) and

ý(y,t) = ý(y,t) for 1 1, 2 and for all values of k. Hence with

these notational simplifications in mind, the final form of the first

order flexure displacement expansioi is

v(y,z,t) =-zkX(y,t) - zwk',t)

w(y,z,t) = w(y,t) (4)

where these equations are valid only when eventually utilized in

developing a laminated beam theory. Equations (4) may be reduced to

those for a homogeneous or single layered beam by setting ý(y,t) 0;

this being done, equations (4.) reduce to those given by Brunelle [16]

for flexure of a beam.

E. J. BRUNELLE (1970) J. Composite Materials, 4, 404-416. The
Statics and Dynamics of a Transversely Isotropic Timoshenko Beam.

7
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( The non-zero strain-displacement relations are

"" ~1 I .'"Y 5-

5'Z P ýz]

The non-zero stress equations of motion which pertain to the problem

are

afyz ,y PW

GI + = pV (6)I•!:. • Y ' y y z , z

From the oppendix and equations (A-17) the constitutive equations for

a special case of the standard linear model are

(1 + C (2kG + 2k G *) y
tyZ 5t y Z

(1 + C -•t) (E + E c-)

where shear correction coeificients k and k* have now been introduced

in a manner similar to that of Timoshenko [12] and Mindlin and

Deresiewicz [17].

The procedure involved in deriving the theory will be to manipu-

late the left sides of equations (6) until they are of The form of the

left sides of equations (7). Thus, taking the first time derivatives

of (6) and multiplying by the viscoelastic constant C results in the

S. P. TIMOSHENKO (1922) Philosophical Magazine, Ser 6, Vol 43,125-131. On the Transverse -Vbrations of Bars of Uniform Cross-

Section.

R. D. MINDLIN and H. DERESIEWICZ (1953) Columbia University Tech-

nical Report No. 10. Timoshenko's Shear Coefficient fo- FlexuralVibrations of Beams.

8
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equatb ns

C yzy= PC

Ca + C PCv (3)
y,y yzz

which when added to Lheir counterparts in equation (6) become

•yz,y + yz,y =pi+p w

a C a + a + C a z=PV + PC (9)
K y,y y,y yz,z yzz

Multiplying the first equation of (8) by • and the second equation by ",

integrating over the beam volume and time, and finally adding the final

answers results in the equation

r• t ~ ~(ay~ + C )y~yW+ (y,+C•~

S'Ao Soa, + yly dA dy dt

AF
+(yz,z + yzlz){I

A0  0o P LV + C + V 0 + C dA dy dt (0

After several integrations by parts, equation (10) may be

expressed as

tOA 0  a~ + C & 4 (G + C yJ dA dt

f'A f So d +(ayz C yz 1C dA dy dt

+ .11

'%i':9



&Y (L + + L (

tf ft • dA dy dt

A 0 0J+C ) -

y Y y

A P + Cw) w 4 (V + C, dA dy dt (11)
A 0

it is immnediately clear that

S t d +C ) dA dy dt 0
f ff 'dz Y J(12)

since both beam surfaces are stress free and that

f t L . + C dA dt =0 (13)
10

since the boundary terms will be satisfied at the beam ends. Applying

equations (5) and (7) to equation (11) and taking into account equa-

tions (12) and (13) results in

fFt tyz yz y
f dA dy dt

A Ost 0 +(EEy + E*-y)•y

f CA vo o [•+cw w+( ', )v] dA dy dt (14)

But, from the chain rule of partial differenation it is clear that

S+~(15)

or that

l d 2

2dt(") '(16)

10
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Similarly, the fact that an indefinite integral can be defined as a

definite integral with a variable upper limit

fg(t)dt = fag(t)dt + con!t. (17)

immediately results, after taking a time derivative of both sides, in

the equation

d t
Tfa g(t)dt = g(t) (18)

,2
which for g(t) c results in the relationship

.2 d t
= -- JE)dt . (19)dt o

A direct application of relations (16) and (19) to equation (14) with

an introduction of equations (4) and (5) results in the equation

21 t2 2r AkG AL G f' (-) d'T

St d k 2-t- 2-ý 2 *d dy dtAEJ0  + E E f (z-

,I•' !

4A2 -2AC~f~ 2d- +A(z22

t p

~~.+ I 2 2ACftb' K
0f02 d + 2 ( 2d dy dt 0

2 t 2L 1 fodT

(20)



after an integration over the beam area where

A = bd

bd3
(21)

with b being the beam width and d being the beam thickness.

Following Anderson [18], a conservation law is sought in the

existence of a quantity H such that

H = constant, (22)

such that obviously

d- = 0 (23)
, dt

where

H = T + U + V '(24)

with the quantities T, U, and V being called the kinetic energy, the

potential energy, and the dissipation energy. From a comparison of

equations (20), (23), ar, (24) it is clear that the various energies

may be defined as

T = fo• T* dy dt

U = U dy dt

V f ft V* dy dt (25)

G. L. ANDERSON (1975) Journal of Sound and Vibration, 39(1),
55-76. Stability of a Rotating Cantilever Subjected to Dissipative,
Aerodynamic, and Transver•e Follower Forces.

12



and from equation (20) it is clear that these energies are

T* = [A&2 + k 2. 2 + I*2]

2A A(za) Ip+I

*= 1 -W 2 AE(zk ))2 + El(Lý)2
U -AkG (r AE k+ (z EI-

2 y2 a D 2 DY

~ 2 E t 2

Ak*G*(- _)+ E*I(-)

V + AE*(zk 2•k _2
oT ) (y -p)AC d (I. (26)

- pAC (zk) 22-PIC 2

THE LAMINATED BEAM THEORY

The laminated beam, Figure 1, is composed of a number of alterna-

ting plane, parallel layers of two homogeneous, isotropic viscoelastic

materials which are respectively termed the reinforcing layer and the

matrix layer. The reinforcing layer is the stiffer of the two layer

combination and is indicated by the subscript "1" while the softer

matrix layer is indicated by the subscript "2". The elastic constants,

the viscoelastic constants, the layer density, and the thickness for

the reinforcing and matrix layers respectively are El, GI, E1 , GI,

CIA pI, di and E2 , G2 , E2, G2, C2 , P2 9 d2 "

The basic variables involved are w, the transverse deflection; p, the,

gross rotation; q,, the rotation of the stiff layer; and q2 , the rota-

tion of the soft layer. The midplane positions for the kth pair of

neighboring reinforcing and matrix layers are yk and yk respectivelyk

13
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A

as indicated in Figure 1, with the layer midplknes taken perpendicular

to the z-axis. The width of the beam is b and the total or gross thick-

ness is h.

From equation (26), the kinetic, potential, and dissipative ener-

gies in tne individual layers are

P 2 k 2.2 .2
T*k ar +

T -a - LAjý + A,(z.) 2Jp +o,@q2]

u(k= 1 A(1(l(G (Lw K 2

AaL( k 2~' l
4. -=-- + LW A.d

A k(z) G 2
y cy

k 2z 3) 2 --. 2•~x
[IV~k =f 1 +A E (zk W) -p A C dT,

C Jo; ) a ýy XX

pa (Xa aa(z -P I C 1 (2./)

where o. 1,2 respectively gives the reinforcing and matrix layer

energies.

Now, the three energies are sunmmed over kthe n lye- pairs to
cIr.Lermine the total energies for the composite beam



T I~ (T~k T~k)

k=L *

kU (U *k + u~k
k= 1

k (n*k + *k
kV (1  V2 )(8

It Is now convenient to convert the discrete system (28) to a contin-

uous system by utilization of a smoothing operation, that Is to replace

the suiuimations in (28) by weighted integrations over the tnickness

variable z.

The result of the smoothing operation is the energies

T* h/2 1 (T + T*)dz

~~, -h/2 (d1+d2)I

-h2(d+ 2  (U* + U*) dz

h/2 14 ~ -h/2 (d+ 2  V ~ z(29)

where after smoothing.4 k 7. (30)
2arrying out the integratinns in (29) in terniz, v( (27) anr. taking '

into account (30) results in the energies

11



.,- 1 2 - d~2 4 +P )d+2
3

2 1 + 2h 3  .2

221 '(dl+d 2 ) P2 P2 A2) (d+d 2 )

1 h 22 1 h .2

p 1 ' 1 2 -- __

2 (dl+d2 ) 2 + 2 2212 (d1+d2 ) 2

2h w + 1 h 2
U* : • AlklG1 (dl+d 2 )(• -•l 1 • A2 k2G2. dl2( "2

+ (A E_+_AE +(E)2• 1 1 h 2 1 h 1I2
2 (dl+d2 E2 1  (dl+d 2 ) ;Y

1 22 '

•h 22y•-

"h( T 2 ** h 2 _ 2)

S(dl+d 2 ) y 2 2k2(dl+d2 ) -y

h D 2 2 h h.2

V f + E*212(ld 2 )(dd ( ' - (pIA 1 Il P2A 2C2)?dlTd W d...

(31)

•(Ill+ p2A2C2) (d1+d2) -' °~ (,Jl+d 2)
I 1 1

PA C h .2

2- 2A - 2 d+(dl d 2 ) 2

At this point, continuity of displacement at the interface

the kth pair of layers must be considered. Applying equatieo', n ; to

a multilayer beam results in the equation

V a(yzt) -zk (y,t) -zv (yt) (32)

17
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and with the aid of Figure 2 it Is clear that

I•I
V1  -Z* 1 2 1

k 2
v2  z - 2 (33)

at the interface between layers 1 and 2. It i. also clear from .

Figure 2 that

2 1 21 2

"and that equations (33) describe the same interface such that

Sv v2  . (35)

"From equations (35) applied to equations (33) it is clear that the

continuity condition is

iw el+ (l'-p2 (36)

d1 d2whr - + (d +d2) • (37)

S(d+d 2 ) 1 - d2)-,_

Following Sun [8], the variable ý2 is eliminated such that

)•; 2 (l-8)

where for convenience the notation a =l has been Introduced.

Expression (38) is directly substituted into equations (31) and

the dimensionless variable

h/(dI + d2 ) (39)

C. T. SUN (1971) Journal of Applied Mechanics, 38, 947-954.
Microstructure Theory for a Composite Beam.

J.... 18



A i � -

IA I.,
w -

0�

0)

r0
-J

0)

I- K
C\J

0)

II

N
�

-- N

I
:1

19



~ (is introduced to yield the energy exp~essions

(A A) ý2 + 1 2
2 C ''~ + 222) 1 b qp,1 + (l-Tn)p 2 ]tp

2 .22pI

+.2 nE( ) (~2

1 l 1 _ ý

2I~rE + !CA n)L G (1?) + TEI1 ,) ¶)
2 y 2 2 Th e- 2

C)I 2b1n 2 (1- (L p1A C2

- IbflEC + (1-n9)EC+J- E I 1 ~ 1~

2-y 1 ay

2 2 2((-ri) y(1-n) a

5b W (471)

20)
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.' ( Now, all the squares of the various sums in equations (40) are expanded

out to yield the final forms of the energy expressions as

1* 2 1 2 a1 *2

24 2 9 2 13 10

w2 (2w 1 2
U Ca (= ,aI (,, aa1 2 • "Ea 2I"•

1 2 ~ ~~~ + 2ca(~) t r p)
2 1 -ýay 3 9 2  1 yý

1 2 a6 2 D 2 1 2y

-a7-
D 2Y

-•.w^.; ,bl(Lw)2 -2rb3 bL-' 4. rb12 -2ýb2 (,w + ýb6•2"D'~y 3y 4y 1 i2

S* 1ot - 4 7b9 2y d- (42)
, 0

-F 2-b22 2rb1~1 () ~

-§b 4• 2 -b 9q'2 -b' 1 32 + 10

l where the constants ai are

a• = Alk l GI + A2 k2 G2

a 2 =A 2 k2 G2 /(l-n)
i,.- 'a3 AlklGl -nA k2G2/0l-11)

'...a4 = oIA - 2 A2a4. I I!" P 212

Ib ~ 22
",,•',,•1. a5 : • n 1 4. (l-n)E2] 4. l- )

a6  A2 k2 G2 /(l-_)2 2/
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a E

( _ _ _ _ _ _ _ _ _

a7 ,- 22 E212

," 'a 8  n Ak2G2

-Ib 2 221 2 2

a9 L[npI + (2-n)p 2 ] +(22na6

9 q P212 +
alO (I-n)2

a10  2 2

(il-n)
2

a1 E1 1 ( n 2 E2 12 1

(ln2

a12 = Alk 1 G1 + A2 k2 G2

(1-n) 2

a 1 A 1 11G1 (1 -TI) A2k2G22

ab = PlAI + 12(43)
13 =PI 1 (1-q)2 P2 2

which correspond to the elastic constants given by Sun [8] for elastic

laminated beams and where the constants biare

b51  A1k 1G + 1 l2 2A 2 (4! G2
4 ~b2  A k G*/1n

2 2 2 2

b6 = A2 k2G2/(-n)( = b2/(l-n)

b l 12 L2212

bSUN 1 o pplid Mechanics, 38, 947-954

•-f",:,I Mcrotrutur Thoryfora C~rmposite Beam.7 22
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b8 -- A k* G nb

(1 n) 22 2 nb6
b9 --•b[rlpr C + (I-n)P2C + f--

2:' 2 l-T)2 P212C2

'b P IM7 C2

b10 = 2 2 2C
bl l E• l + n12C2(l-n) 2  22

? , n2bl A EIk1 + (1)2 E I2

e~* . 2 1Ak(44

A13 1 1 1  (l-_) 2  2 2 2
" •'i bl2 Q1AlkI 1 + ' 2 kG

-ab1-=-lll - P2 12 C2  (44)
•: (1-n)

which correspond to the viscoelastic contribution of the current anal-

ysis of viscoelastic laminated beams. It should be noted that the

author [19] has evaluated viscoelastic shear correction constants in

another paper and based on this evaluation it is clear that kI :

k2 = kI = k2 =

Now, from equations (22-25) in conjunction with equations (42) it

is easy to form energy principle (23), that is dH/dt=O, which upon

various integrations by parts and a gathering of common factors of

•,•, and • results in equation (23) becoming

9C. R. THOMAS (1976) Watervliet Arsenal Technical Report,

WVT-TR-76009 Simple Thickness Modes and Shear Correction
Coefflc-ents for Viscoelastic, Timoshenko Beams.
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+ fl$ a 3ý + a b +b 6 dt 0. (45)

0

The viscoelastic equations of motion and boundary conditions for

*laminated beams are now obtained by applying the first 'lemma of the

calculus of variations to equation (45). Thus, the three equations of

motion are

'4.!

a2 4 -- a 3  b b
-ý2 2ý -a 22,y -3T a40 4 ~

2 '2  D2

+ ba a + 0 + b b10

b- + 8aag ao + b -- b blb i

2 2*

33y 7  2 8 11 2 12 3 y 7 ' 8ay ayay

b'+ b ~ (46)
+ b112 - b 12$ a 10 q) a 13p bO0 13

and the corresponding boundary conditions aref

1K

a1Dw~ i ~ +b -w b2  bp =0,

or

w 0 on y Ok(47-a)

a+ a I + b - b L 0,

5 7a) b5 ý- 79Y

or

0 on y aOz (47-b)
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a a +b b 0,
7 11~ 7, 11~

or

0 on l o,9 . (47-c)

SUMMARY

An energy principle has been formulated for viscoelastic Timoshenko

beams according to the stardard linear model with the stipulation, and

hence additional terms, that the i•nerjy principle be utilized in build-

"ing a viscoelascic lmniinated beam theory.' The Timoshenko model con-

sidered has accounted for bot'i viscoelast~ic extensional and visco-

elastic shear strains. ro later "incorporate the single layer energy

principle into the development of a laminated oeam theory, a term which

accounts for the beam's gross rotation was included in the single layer

development.

Vý Using the single layer energies developed, a viscoelastic lam-

inated beam theory composed of a number of alternating, plane, parallel

il, layers of two homogenious, isotropic viscoelastic materials, termed

the reinforcing layer and the matrix layer, was derived. In deriving

the theory, the individual layer kinetic, potential, and dissipative

energies were summed over n layer pairs to obtain the total energy of

S:the composite beam; these results are converted to a continuous

system by utilization of a smoothing operation or weighted integration.

The number of independent variables in the total composite beam energies

is reduced from four to three thru the introduction of a condition for

continuity at layer interfaces. A direct application of the energy

26
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principle developed to the composite beam energies results in a set of

three equations of motion and their corresponding boundary conditions

for viscoelastic, laminated composite beams. A future report will dis-

cuss a number of meaningful results of both wave propagation and vibra-

tion analysis utilizing the equations of motion developed in this report.

I
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APPENDIX

The present objective is to derive a set.of constitutive relations
which can be utilized in conjunction with the basic equations for a

Timoshenko beam. While constitutive equations may be formulated in

either integral or differential form, preliminary work in the direction

of' formulation of a viscoelastic beam theory for laminated composite

materials indicates that the differential form of constitutive rela-

tions will be most useful. The differential constitutive relations

will be utilized in the present development.

The general form of the differential constitutive equations is

adapted from Fung [20] where the stress-strain relations are of the

f form

1),2(D)Uk =Q(D)ekk A-l
,II1) 2I(D)• = Q (D)e ( -1

+i P2~(D)Ckk =Q2(D kk(Al

I where Pi(D) and Qi(D) are given by
: k=n,

)"PI(D) X=o! akDi k=o

k":n 2  kS~P2(D) = CkD

20
Y. C. FUNG (1965) Prentice-Hall, Inc. "Foundations of Solid
Mechanics".
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k=m-L ,Q I(D) b O kD
k~bu:• k=,:)

Q (D) = komdD (A-2)

with D being the time-derivative operator of the form
•ift

D if =- ft (A-3)
ati

an, wi,-re u' and e~j are the components of the stress and strain

deviate•'s
1 I

a'. U -1j ij 3 6ij 'kk

e eij "3 ij kk (A-4)

in which ai and eij are the components of stress and strain.

Now, assume equations (A-1) to have the form of the standard

linear model

(0 + K -)a -- + C -)C
at at (A-5)

where a is stress and e is strain. Comparing the form of (A-5) with

equations (A-1) it is clear that to have the form of the standard

linear model it must be true that

"1 1 = 2 2 (A-6)

31
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and operators (A-2) in light of (A-6) reduce to

SPI(D) = ao + aiD

QI(D) = bo + biD

P2 (D) Co + C1 D

Q2 (D) = do diD (A-7)

As will be subsequently seen, the only non-zero stresses and

strains for a Timoshenko beam with its y-axis along the length and its

z-axis through the thickness are cy and-y & Cy and c Thus, from

equation (A-4) the non-zero stress and strain deviators are

2

~ yz 0yz

, 2C , E (A-8)
y 3y yz 1yz

Now, a direct substitution of equations (A-?), (A-7), and (A-8) into

equation (A-1) results in

[I + (al/ao)D]yuy7 [(bo/ao) + (bl/ao)D]hyz

[I + (al/ao)D]uy [(bo/o) + (bl/ao)ID].y

[l + (Cl/Co)DIoy [(do/Co) + (dl/Co)D]cy (A-9)0 i!

There are thus two equations for stress-strain in the y- coordinate

Dloy = D2•y

D 3Uy D4 .-y (A-10)
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where

D1 l-(al/ao)D

" 02 = (b0/a 0 ) + (bl/ao)D

03 = 1 + (CI/Co)D

04 = (d0 /CO) + (dI/Co)D , (A-1I)

and they must be combined to form a single constitutive equation

2DID30 = (D203 + DID 4)•y (A-12)

Now, from both the right and left sides of equation (A-12) it is clear

K that the constitutive equation is of the form

-2 +~oa 2 ~, (-3(1 + aD + bD2)Oy = (1 + C D + ;D ' (A-13)

but it would now be desireable to have the form of the standard linear

model as in equation (A-5), if. possible. This can be achieved if the

restriction is now made that

01 = D3 = 1 + (aI/ao)D (A-14)

such that equation (A-12) now becomes

Ll + (al/ao)D]cy = ![(bo/a + d/C) (b/a + dl/Co)D]y (A-15)
10 y 2 0 1/a0  d1/C0) y(-~

As a final step, define the constants

C = aI/ao

E 1(bo/ao + do/C o )

1
= •(bl/ao + dl/Co)

2G bo/ao

2G =bI/a( (A-16)

/y
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with the final form of the constitutive equation thus being

(I + C = (2G + *

4

+ C I(y ( *')y(-7

*35
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